SAM3 笔记4:ComfyUI + SAM3 容器化部署

摘要: Meta 的 SAM3 (Segment Anything Model 3) 带来了强大的图像分割和视频跟踪能力。本文详细介绍了如何在 Docker 环境下部署 ComfyUI-SAM3,解决了依赖缺失、CUDA 编译加速以及模型路径配置等常见坑点,并提供了现成的 Docker 配置文件和测试工作流。 Meta 最近发布的 SAM3 在图像分割和视频对象跟踪方面表现出色。虽然 ComfyUI 社区迅速跟进适配了 PozzettiAndrea/ComfyUI-SAM3 插件,但在 Docker 环境下部署时,我们遇到了一系列依赖和环境问题。 本文将分享一套经过验证的 Docker 部署方案,包含显存优化、CUDA 加速编译以及常见报错修复。 1. 核心配置文件 我们将使用 pytorch/pytorch:2.5.1-cuda12.4-cudnn9-devel 作为基础镜像,以支持…

在 RTX 4060 Ti 16G 上使用 Docker 部署 ComfyUI Z-Image (FP8版)

摘要:RTX 4060 Ti 16G 是运行 Z-Image 的“黄金甜点”显卡。本文记录了如何利用 FP8 量化技术、Docker 容器化部署,最终实现生图的全过程。 随着 Z-Image (S3-DiT架构) 的发布,AI 绘画进入了新的画质里程碑。但其庞大的参数量(6B 模型 + 3.4B 文本编码器)让许多显卡望而却步。 经过实测,RTX 4060 Ti 16GB 配合 FP8 量化 是目前性价比最高的解决方案。本文将手把手教你使用 Docker 部署这套环境。 1. 核心策略:为什么选 FP8? 在开始动手前,我们需要明确模型版本的选择。Z-Image 有三种主流格式,对于…